
1

This lecture is about how virtual memory is managed in a process and a
computer system.

Lecture 10 Slide 1PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Lecture 10

Virtual Memory

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

2

Caches makes the main memory, which is off-chip, appears to be on-chip and
therefore much faster. It provides an interface mechanism between the CPU
and the main memory.
Virtual memory is a different method that give the illusion that the main
memory is larger than it actually is. In this way, the main memory act as
cache for the main memory which provides a larger address space than what
is possible with the main memory.
For example, a 32-bit byte addressing processor may only have a maximum
of physical address space of 4GB. If one needs more than that, the hard disk
could be used to provide that extra storage up to whatever is the size of the
disk.

Lecture 10 Slide 2PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Virtual Memory – What is it?

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• Gives the illusion of memory bigger than physical size
• Main memory (DRAM) acts as cache for hard disk

3

Since the cost per GB of hard disk is many times lower than main memory
(DRAMs), having the ability to make hard disk appear like main memory is cost
effective. However, hard disks, even the fast Solid State Disk (SSD) is much slower
than DRAMs.

The memory space for the CPU that is on the hard disk is known as “Virtual”
memory. The memory space offered by the main memory is called “Physical”
memory.

Lecture 10 Slide 3PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Memory Hierarchy - revisited

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• Physical Memory: DRAM (Main Memory)
• Virtual Memory: Hard drive

– Slow, Large, Cheap

4

In the past, computers generally use hard disk drives to put the virtual memory. It
is large, cheap and slow.
In modern computers, hard disk drives with spinning platters are replaced by
much faster (but more expensive) Solid State Disk (SSD) drives. These are made
from integrated circuit, no moving parts, reprogrammable and non-volatile. While
it costs 3X to 5X as compared to a hard disk per GB, it also offers much better
performance. It is arguably the best cost-effective upgrade one can perform on an
older laptop – replace the hard disk drive with a SSD drive!

Lecture 10 Slide 4PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Two common types of Disk memory

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Hard Disk Drive
Solid State Drive

Takes milliseconds to seek correct location on disk

Relatively fast read, often slower write

5

Addresses in any program is NOT real, but virtual. The whole of virtual memory
contents (instructions and data) are stored on disk. Part of these are loaded into
main memory from disk as required.
The CPU translate virtual addresses to physical addresses each time memory is
accessed. Data/instructions then get fetch from hard disk to main memory, then to
cache etc.
In this way, the same CPU can run different programs (threads) with either time
multiplexing or using different CPU cores. Each program has its own virtual address
space co-existing with the virtual address spaces of other programs.

Virtual addresses are mapped to physical addresses space. Two programs can have
identical virtual address space, but map to DIFFERENT physical addresses. One
program CANNOT read or write into another program’s address space. This avoids
corruption of other programs data or instructions.

Such mapping from virtual to physical addresses relies on both hardware and
software implementations. The hardware is usually called Memory Management
Unit (MMU). The software implementation resides in the operating system.

Lecture 10 Slide 5PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Virtual Memory Address

• Virtual addresses
– Programs use virtual addresses
– Entire virtual address space stored on a hard drive
– Subset of virtual address data in DRAM
– CPU translates virtual addresses into physical addresses (DRAM)
– Data not in DRAM fetched from hard drive

• Memory Protection
– Each program has own virtual to physical mapping
– Two programs can use same virtual address for different data
– Programs don’t need to be aware others are running
– One program (or virus) can’t corrupt memory used by another

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

6

The physical memory in effect acts as cache for the virtual memory, which resides
on the hard disk.
There are a lot of similarity between cache and virtual memory. Instead of blocks,
virtual memory is organized into pages. A VM page is usually much larger than a
cache block.
When data is not found on the page stored in main memory, and the system has to
go to the VM on disk to fetch it, this is called a Page Fault instead of a Cache Miss.

When mapping a virtual address to a physical address, we identify the Page
Number as part of the virtual address. This is similar to the Tag on cache memory.

In order to translate a virtual address to a physical address, we use a Page Table,
which is a lookup table the maps a virtual page to a physical page, as explained in
the next few slides.

Lecture 10 Slide 6PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Virtual Memory Terminologies

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page
Number

Physical memory acts as cache for virtual memory

• Page size: amount of memory
transferred from hard disk to DRAM
at once

• Address translation: determining
physical address from virtual address

• Page table: lookup table used to
translate virtual addresses to physical
addresses

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

7

This is a diagram showing that the virtual address space of a typical program has
some of its contents mapped to the hard disk, and some to physical memory. The
mapping is the address translation.

Unit of mapping is the a Page (which is often say, 4KB in size).
Note that the locations of consecutive pages in Virtual Memory can be ANYWHERE
in physical memory. For example, the GREEN page and the RED page in VM is map
to different part of the physical memory, despite them being consecutive in the
virtual memory space.

Due to the large Page Size and the property of temporal and spatial locality in
memory accesss of a typical program, most accesses to the VM space are found in
the physical memory. In most cases, Page Misses are rare and therefore the fact
that VM space exists on disk is often not notices. This is particularly true with SSD,
which is much faster than hard disk.

When a Page has to be fetch from disk to be placed in physical memory, the old
page is vacated and the new Page written. This is known as “swapping”. A well
designed system to minimum such page swapping.

Lecture 10 Slide 7PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Virtual to Physical Memory Mapping

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Most accesses hit in physical memory
But programs have the large capacity of virtual memory

8

This slide shows how to translate a virtual address into a physical address.
Assumptions of the system:
Virtual address space is 2GB, therefore the virtual address is 31 bits (231 = 2G).
The actual physical memory space is only 128MB, 16 times smaller than the
virtual address space. The physical address is therefore 27 bits.
Each VM Page is 4kB, i.e. 12 bit page offset (or address within a page).

The bottom 12 bits of the virtual address and physical address are the same.
The top 19 bits of the virtual address is the Virtual Page Number (VPN). This goes
through a translation lookup table, to find the 15-bit Physical Page Number (PPN)
in the physical address.

Lecture 10 Slide 8PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Address Translation Example

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Page OffsetPPN

11 10 9 ... 2 1 0
Page OffsetVPN

Virtual Address

Physical Address

Translation

30 29 28 ... 14 13 12

11 10 9 ... 2 1 026 25 24 ... 13 12

19

15
12

• System:
– Virtual memory size: 2 GB = 231 bytes
– Physical memory size: 128 MB = 227 bytes
– Page size: 4 KB = 212 bytes

• Organization:
– Virtual address: 31 bits
– Physical address: 27 bits
– Page offset: 12 bits
– # Virtual pages = 231/212 = 219

(VPN = 19 bits)
– # Physical pages = 227/212 = 215

(PPN = 15 bits)

9

Here is an example. The virtual address is 0x247C. Therefore the VPN is 2,
i.e. it is virtual address page 2. The Page Offset is 0x47C.

There is a translation table somewhere. Page 2 is third up from the bottom:
page 0, page 1, then page 2. This entry in the lookup table is responsible for
translating any virtual address between 0x2000 and 0x2FFF to physical
address. The table contains the Physical Page Number, say, 0x7FFF.

Then virtual address 0x247C is translated to the physical address 0x7FFF47C.

Lecture 10 Slide 9PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Virtual Memory Example

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Physical Memory

Physical
Page Number Physical Addresses

Virtual Memory

Virtual
Page NumberVirtual Addresses

7FFF 0x7FFF000 - 0x7FFFFFF
0x7FFE000 - 0x7FFEFFF

0x0000000 - 0x0000FFF
0x0001000 - 0x0001FFF

7FFE

0001
0000

7FFFA
7FFF9

00006
00005

7FFFC
7FFFB

7FFFE
7FFFD

7FFFF

00001
00000

00003
00002

00004

0x7FFFF000 - 0x7FFFFFFF
0x7FFFE000 - 0x7FFFEFFF
0x7FFFD000 - 0x7FFFDFFF
0x7FFFC000 - 0x7FFFCFFF
0x7FFFB000 - 0x7FFFBFFF
0x7FFFA000 - 0x7FFFAFFF

0x00005000 - 0x00005FFF

0x00003000 - 0x00003FFF

0x00001000 - 0x00001FFF

0x7FFF9000 - 0x7FFF9FFF

0x00006000 - 0x00006FFF

0x00004000 - 0x00004FFF

0x00002000 - 0x00002FFF

0x00000000 - 0x00000FFF

• 19-bit virtual page numbers (VPN)
• 15-bit physical page numbers (PPN)

What is the physical address of virtual
address 0x247C?

– VPN = 0x2
– VPN 0x2 maps to PPN 0x7FFF
– 12-bit page offset: 0x47C
– Physical address = 0x7FFF47C

10

Here is the details of the Page Table that performs the translation.
The Page Table has one entry to every virtual memory page. The top 19 bits of
the virtual address specifies the VPN. The entry in the Page Table consists of a
Valid bit (V), which is set 1 only if it contains a valid Physical Page Number,
meaning that the contents of the page resides in physical memory and are valid to
use.
In this case, page 2 entry in the Page Table is value, and contains 15-bit PPN of
0x7FFF. In this way, the physical address is found and used and HIT is asserted.

Lecture 10 Slide 10PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Address Translation using Page Table

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• Page table
– One entry for each virtual page
– Entry fields:
• Valid bit: 1 if page in physical

memory
• Physical page number: where

the page is located

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00002 47C

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

Pa
ge

 T
ab

le

Page
Offset

Physical
Address 0x7FFF 47C

Virtual Page Number (VPN) is index into page table

11

Take another example, virtual address is 0x5F20. VPN is 5.
In the Page Table, entry for VPN=5 is valid and has the value of 0x0001.
Therefore the physical address is 0x1F20.

Lecture 10 Slide 11PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Address Translation Example 1

Virtual address is 0x5F20
What is the physical address?

Page Table

Virtual
Page Number

7FFFA

00006
00005

7FFFC
7FFFB

7FFFE
7FFFD

7FFFF

00001
00000

00003
00002

00004

V

00007

Physical
Page Number

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

– VPN = 5
– Entry 5 in page table VPN 5

=> physical page 1
– Physical address: 0x1F20

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00005 F20

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

Pa
ge

 T
ab

le

Page
Offset

Physical
Address 0x0001 F20

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

12

Here is a final example. The virtual address is 0x73E4. Therefore VPN = 7.

Entry for 7 has valid bit V=0. A Page Fault occurs. 4kB of contents is now
read from disk to physical memory (the location is determined by the OS),
and the PPN is written into the table.

Lecture 10 Slide 12PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Address Translation Example 2

Virtual address is 0x73E4
What is the physical address?

Page Table

Virtual
Page Number

7FFFA

00006
00005

7FFFC
7FFFB

7FFFE
7FFFD

7FFFF

00001
00000

00003
00002

00004

V

00007

Physical
Page Number

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

– VPN = 7
– Entry 7 is invalid
– Virtual page must be paged

into physical memory from
disk

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00007 3E0

Hit

Physical
Page Number

19

15

Virtual
Page Number

Pa
ge

 T
ab

le

Page
Offset

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

13

In general, the page table is large. In our example, the page table has 219 entries.
This table is used for every memory access, therefore it usually resides in the main
physical memory. Even then, each load/store operation to virtual address requires
up to 2 main memory access. The first to read the translation table, and the second
to access the data.
This is obviously not efficient each if the main memory speed is high. Therefore we
build a hardware cache on the processor chip to store the most recent translations,
such that most access now only take 1 memory operation instead of 2.

Lecture 10 Slide 13PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Page Table Challenges

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• Page table is large
– usually located in physical memory

• Load/store requires 2 main memory accesses:
– one for translation (page table read)
– one to access data (after translation)

• Cuts memory performance in half
– Unless we get clever…

• Cache most recent translations
• Reduces number of memory accesses for most

loads/stores from 2 to 1

14

Due to temporal locality and the large page size, generally successive access to
memory are very likely to be fro the same page, using the same VPN to PPN
mapping. Therefore we have a local cache to store this translation table.

This lookup table cache is called a “Translation Lookaside Buffer” (TLB).

TLB are usually quite small – 16 to 512 entries. It is fast and could be access within
a memory access cycle. It is fully associative meaning that the mapping can be to
any physical memory page. Usually the TLB hit rate is over 99%, thus making most
memory access to 1 per read/write to physical memory.

Lecture 10 Slide 14PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Translation Lookaside Buffer (TLB)

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• Page table accesses: high temporal locality
– Large page size, so consecutive loads/stores likely to access same

page
• TLB
– Small: accessed in < 1 cycle
– Typically 16 - 512 entries
– Fully associative
– > 99% hit rates typical
– Reduces number of memory accesses for most loads/stores from

2 to 1

15

This diagram shows a 2-entry TLB – it looks very similar to cache, except that it
stores the PPN instead of memory contents.

Lecture 10 Slide 15PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

A 2-entry TLB

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Hit1

V

=

01

15 15

15

=

Hit1Hit0

Hit

19 19

19

Virtual
Page Number

Physical
Page Number

Entry 1

1 0x7FFFD 0x0000 1 0x00002 0x7FFF

Virtual
Address 0x00002 47C

1219

Virtual
Page Number

Page
Offset

V
Virtual

Page Number
Physical

Page Number

Entry 0

12Physical
Address 0x7FFF 47C

TLB

16

Here are the key lessons on Virtual Memory.

Lecture 10 Slide 16PYKC 26 Nov 2024 EIE2 Instruction Architectures & Compilers

Virtual memory Summary

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• Multiple processes (programs) run at once
• Each process has its own page table
• Each process can use entire virtual address space
• A process can only access a subset of physical pages: those mapped

in its own page table

• Virtual memory increases capacity
• A subset of virtual pages in physical memory
• Page table maps virtual pages to physical pages – address translation
• A TLB speeds up address translation
• Different page tables for different programs provides memory

protection

